NH2-terminal Deletion of β-Catenin Results in Stable Colocalization of Mutant β-Catenin with Adenomatous Polyposis Coli Protein and Altered MDCK Cell Adhesion

نویسندگان

  • Angela I.M. Barth
  • Anne L. Pollack
  • Yoram Altschuler
  • Keith E. Mostov
  • W. James Nelson
چکیده

beta-Catenin is essential for the function of cadherins, a family of Ca2+-dependent cell-cell adhesion molecules, by linking them to (alpha)-catenin and the actin cytoskeleton. beta-Catenin also binds to adenomatous polyposis coli (APC) protein, a cytosolic protein that is the product of a tumor suppressor gene mutated in colorectal adenomas. We have expressed mutant beta-catenins in MDCK epithelial cells to gain insights into the regulation of beta-catenin distribution between cadherin and APC protein complexes and the functions of these complexes. Full-length beta-catenin, beta-catenin mutant proteins with NH2-terminal deletions before (deltaN90) or after (deltaN131, deltaN151) the alpha-catenin binding site, or a mutant beta-catenin with a COOH-terminal deletion (delta C) were expressed in MDCK cells under the control of the tetracycline-repressible transactivator. All beta-catenin mutant proteins form complexes and colocalize with E-cadherin at cell-cell contacts; deltaN90, but neither deltaN131 nor deltaN151, bind alpha-catenin. However, beta-catenin mutant proteins containing NH2-terminal deletions also colocalize prominently with APC protein in clusters at the tips of plasma membrane protrusions; in contrast, full-length and COOH-terminal-deleted beta-catenin poorly colocalize with APC protein. NH2-terminal deletions result in increased stability of beta-catenin bound to APC protein and E-cadherin, compared with full-length beta-catenin. At low density, MDCK cells expressing NH2-terminal-deleted beta-catenin mutants are dispersed, more fibroblastic in morphology, and less efficient in forming colonies than parental MDCK cells. These results show that the NH2 terminus, but not the COOH terminus of beta-catenin, regulates the dynamics of beta-catenin binding to APC protein and E-cadherin. Changes in beta-catenin binding to cadherin or APC protein, and the ensuing effects on cell morphology and adhesion, are independent of beta-catenin binding to alpha-catenin. These results demonstrate that regulation of beta-catenin binding to E-cadherin and APC protein is important in controlling epithelial cell adhesion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of β-Catenin Interactions with APC Protein Regulate Epithelial Tubulogenesis

Epithelial tubulogenesis involves complex cell rearrangements that require control of both cell adhesion and migration, but the molecular mechanisms regulating these processes during tubule development are not well understood. Interactions of the cytoplasmic protein, beta-catenin, with several molecular partners have been shown to be important for cell signaling and cell-cell adhesion. To exami...

متن کامل

Effects of Forced Expression of an NH2-terminal Truncated β-Catenin on Mouse Intestinal Epithelial Homeostasis

beta-Catenin functions as a downstream component of the Wnt/Wingless signal transduction pathway and as an effector of cell-cell adhesion through its association with cadherins. To explore the in vivo effects of beta-catenin on proliferation, cell fate specification, adhesion, and migration in a mammalian epithelium, a human NH2-terminal truncation mutant (DeltaN89 beta-catenin) was expressed i...

متن کامل

Epithelial-mesenchymal transition and nuclear β-catenin induced by conditional intestinal disruption of Cdh1 with Apc is E-cadherin EC1 domain dependent

Two important protein-protein interactions establish E-cadherin (Cdh1) in the adhesion complex; homophilic binding via the extra-cellular (EC1) domain and cytoplasmic tail binding to β-catenin. Here, we evaluate whether E-cadherin binding can inhibit β-catenin when there is loss of Adenomatous polyposis coli (APC) from the β-catenin destruction complex. Combined conditional loss of Cdh1 and Apc...

متن کامل

Beta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells

Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...

متن کامل

The APC network regulates the removal of mutated cells from colonic crypts.

Self-renewal is essential for multicellular organisms but carries the risk of somatic mutations that can lead to cancer, which is particularly critical for rapidly renewing tissues in a highly mutagenic environment such as the intestinal epithelium. Using computational modeling and in vivo experimentation, we have analyzed how adenomatous polyposis coli (APC) mutations and β-catenin aberrations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 136  شماره 

صفحات  -

تاریخ انتشار 1997